The present study investigated the therapeutic efficacy and potential mechanism of Jinqi Jiangtang Tablets(JQJT) on pancreatic β cell dysfunction based on network pharmacology and molecular docking technology. TCMSP platform was used to retrieve the chemical components and targets of the three Chinese herbal medicines of JQJT. The genes were converted to gene symbol by the UniProt, and its intersection with targets related to pancreatic β cell function in GeneCards and CTD databases was obtained. The drugs, active components and common targets were imported into Cytoscape 3.8.2 to plot the drug-component-target network. The main effective components and targets were obtained by software analysis. The drug targets and targets related to pancreatic β cell function were imported separately into the STRING platform for the construction of protein-protein interaction(PPI) networks. The two PPI networks were merged by Cytoscape 3.8.2 and the key targets were obtained by plug-in CytoNCA. The targets obtained from drug-component-target network and PPI networks were imported into DAVID for GO analysis and KEGG enrichment analysis. AutoDock was used to carry out molecular docking of main active components and core targets and Pymol was used to plot the molecular docking diagram. The results showed that there were 371 active components and 203 targets related to JQJT and 2 523 targets related to pancreatic β cell damage, covering 136 common targets. The results revealed core targets(such as PTGS2, PTGS1, NOS2, ESR1 and RXRA) and effective key components(such as quercetin, kaempferol, luteolin, β-carotene and β-sitosterol). KEGG enrichment analysis indicated that apoptosis, inflammation, and other signaling pathways were mainly involved. Molecular docking results showed that the main active components could spontaneously bind to the targets. This study preliminarily revealed the mechanism of JQJT in improving pancreatic β cell damage through multi-component, multi-target and multi-pathway, and provided a theoretical basis for JQJT in the treatment of pancreatic β cell dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210713.402 | DOI Listing |
Int J Cancer
January 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital and Institute, Beijing, China.
Pancreatic cancer is a particularly aggressive tumor, distinguished by the presence of a prominent collagenous stroma and desmoplasia that envelops the tumor cells. Pancreatic stellate cell (PSC) contributes to the formation of a dense fibrotic stroma and has been demonstrated to facilitate tumor progression. As the significance of PSCs is increasingly revealed, more explorations are focused on the complex molecular mechanisms and tumor-stromal crosstalk in order to guide potential therapeutic approaches through deactivating or reprogramming PSCs.
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, People's Republic of China.
Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.
View Article and Find Full Text PDFWorld J Surg
January 2025
Precision Medicine Program, Hoag Family Cancer Institute, Newport Beach, California, USA.
Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.
Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.
Mol Cancer
January 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!