Peptides constitute an essential component of all organisms' protein homeostasis ranging from bacteria, plants, and animals. They have organically been evolved to perform a wide range of essential functions, including their role as neurotransmitters, antimicrobial peptides (AMPs), and hormones. AMPs are short peptides synthesized by almost all organisms, implicated in guarding the host from various microbial infections. Their inherent ability to differentiate the target microbes from the host confers them excellent prospects in fighting against microbial infections and affirming their robust therapeutic potential against numerous drug-resistant microbes. Amyloidogenic peptides (AMYs) represent another class of short peptides armed with inherent aggregation propensity and form fibrillar aggregates rich in cross β-sheet structure. They are often involved in various degenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and type-2 diabetes. Although these two distinct classes of peptides (i.e., AMPs and AMYs) appear to be functionally divergent, recent studies suggest that they possess a significant degree of structural and functional reciprocity. Consistent with this, many AMPs display amphiphilic nature, and hence, they can facilitate membrane remodeling processes, such as pore formation and fusion, similar to AMYs. The mounting evidence suggests the inherent ability of AMPs to self-assemble to form amyloid-like structures. On the other hand, the demonstration of antimicrobial properties of AMYs in their monomeric conformation provides a hint about the existence of an evolutionary linkage between these two classes of peptides. The congregation of specific amino acids to form aggregation-prone regions in a protein/peptide might have served as an evolutionary reservoir from which AMPs and AMYs were consecutively evolved. The current article reviews the fundamental features of the AMPs, AMYs, and their inter-relatedness and emerging paradigm for their inter-conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.3378 | DOI Listing |
Chem Soc Rev
August 2024
Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms.
View Article and Find Full Text PDFJ Pept Sci
April 2022
Department of Biotechnology, Central University of Rajasthan, Ajmer, India.
Peptides constitute an essential component of all organisms' protein homeostasis ranging from bacteria, plants, and animals. They have organically been evolved to perform a wide range of essential functions, including their role as neurotransmitters, antimicrobial peptides (AMPs), and hormones. AMPs are short peptides synthesized by almost all organisms, implicated in guarding the host from various microbial infections.
View Article and Find Full Text PDFJ Mol Biol
May 2014
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden. Electronic address:
Several amyloid-forming and antimicrobial peptides (AMYs and AMPs) have the ability to bind to and damage cell membranes. In addition, some AMYs possess antimicrobial activity and some AMPs form amyloid-like fibrils, relating the two peptide types and their properties. However, a comparison of their sequence characteristics reveals important differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!