Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection.

Inflamm Res

Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, 4801 E Linwood Blvd., Kansas City , MO, 64128, USA.

Published: January 2022

Background: The SARS-CoV-2 pandemic continues to spread sporadically in the Unites States and worldwide. The severity and mortality excessively affected the frail elderly with co-existing medical diseases. There is growing evidence that cross-talk between the gut microbiome, Vitamin D and RAS/ACE2 system is essential for a balanced functioning of the elderly immune system and in regulating inflammation. In this review, we hypothesize that the state of gut microbiome, prior to infection determines the outcome associated with COVID-19 sepsis and may also be a critical factor in success to vaccination.

Methods: Articles from PubMed/Medline searches were reviewed using a combination of terms "SARS-CoV-2, COVID-19, Inflammaging, Immune-senescence, Gut microbiome, Vitamin D, RAS/ACE2, Vaccination".

Conclusion: Evidence indicates a complex association between gut microbiota, ACE-2 expression and Vitamin D in COVID-19 severity. Status of gut microbiome is highly predictive of the blood molecular signatures and inflammatory markers and host responses to infection. Vitamin D has immunomodulatory function in innate and adaptive immune responses to viral infection. Anti-inflammatory functions of Vit D include regulation of gut microbiome and maintaining microbial diversity. It promotes growth of gut-friendly commensal strains of Bifida and Fermicutus species. In addition, Vitamin D is a negative regulator for expression of renin and interacts with the RAS/ ACE/ACE-2 signaling axis. Collectively, this triad may be the critical, link in determination of outcomes in SARS-CoV-2 infection. The presented data are empirical and informative. Further research using advanced systems biology techniques and artificial intelligence-assisted integration could assist with correlation of the gut microbiome with sepsis and vaccine responses. Modulating these factors may impact in guiding the success of vaccines and clinical outcomes in COVID-19 infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568567PMC
http://dx.doi.org/10.1007/s00011-021-01510-wDOI Listing

Publication Analysis

Top Keywords

gut microbiome
28
microbiome vitamin
12
gut
8
vitamin ras/ace2
8
vitamin
6
microbiome
6
covid-19
5
infection
5
vitamin ace2
4
ace2 interactions
4

Similar Publications

Damage to the intestinal mucosal barrier and dysbiosis of the gut microbiota are critical factors in HIV progression, reciprocally influencing each other. Besides bacteria, the fungal microbiota, a significant component of the gut, plays a pivotal role in this dysregulation. This study aims to investigate changes in the gut mucosal barrier and mycobiota during the initial stages of HIV infection, focusing on the involvement of intestinal fungi and their secretions in mucosal damage.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have transformed oncological treatment by modulating immune responses against tumors. However, their efficacy is subject to inter-patient variability and is associated with immune-related adverse events (irAEs). The human gut microbiota, a complex microbial ecosystem, is increasingly implicated in modulating responses to ICIs.

View Article and Find Full Text PDF

Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers.

View Article and Find Full Text PDF

NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage.

Neural Regen Res

January 2025

Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.

Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.

View Article and Find Full Text PDF

Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!