In the present study, brick kiln slag (BKS) has been utilized for low concentration As(III) adsorption in batch mode. BKS was modified with H2SO4 (SA) and NaOH (SB) for enhancing As(III) uptake capacity. Maximum adsorption capacity (13.7 mg/g) was observed for SA at 298 K, pH = 7.0, adsorbent dose = 0.3 g and time = 70 min which was 1.4 times higher than that of SB. Adsorption data modelled into Freundlich isotherm and pseudo-second-order kinetics. Mass transfer coefficients decreased with increase in As(III) concentration. Film diffusion significantly dominated the adsorption of As(III) ions irrespective of the initial concentration. Dimensionless Sherwood number (Sh) interrelated As(III) concentration (Co) as: Sh = 2.97(Co)-0.376, Sh = 4.12(Co)-0.215, Sh = 4.83(Co)-0.588 for H2SO4 modified, NaOH modified and native slag respectively. Low temperature (298 K) favoured As(III) adsorption (based on ∆G° value). Therefore, the modified slag can be used as an effective adsorbent for As(III) remediation from groundwater.

Download full-text PDF

Source

Publication Analysis

Top Keywords

kinetics mass
8
mass transfer
8
asiii adsorption
8
asiii concentration
8
asiii
7
adsorption
6
application chemically
4
modified
4
chemically modified
4
modified industrial
4

Similar Publications

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.

View Article and Find Full Text PDF

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

Highly Permselective Contorted Polyamide Desalination Membranes with Enhanced Free Volume Fabricated by mLbL Assembly.

ACS Appl Mater Interfaces

January 2025

Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.

The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!