Aim: This study aimed to predict the key targets and endocrine mechanisms of Guizhi Fuling Wan (GZFLW) in treating adenomyosis (AM) through network pharmacology, molecular docking, and animal experiment verification.
Methods: The related ingredients and targets of GZFLW in treating AM were screened out using TCMSP, BATMAN-TCM, SwissTargetPrediction, and PubChem Database. Then, the protein-protein interaction (PPI) analysis and the network of compound-hub targets were constructed. At the same time, the key targets were uploaded to the Metascape Database for KEGG pathway enrichment analysis. After that, the molecular docking technology of the main active components and hub targets was performed. Furthermore, animal experiments were used to verify the results of network pharmacology analysis.
Results: A total of 55 active ingredients of GZFLW and 44 overlapping targets of GZFLW in treating AM were obtained. After screening, 25 hub targets were collected, including ESR1, EGF, and EGFR. Then, the KEGG pathway enrichment analysis results indicated that the endocrine therapeutic mechanism of GZFLW against AM is mainly associated with the estrogen signaling pathway, endocrine resistance, and an EGFR tyrosine kinase signaling pathway. Then, molecular docking showed that the significant compounds of GZFLW had a strong binding ability with ER and EGFR. More importantly, the animal experiments confirmed that the GZFLW could downregulate the abnormal infiltration of the endometrial epithelium into the myometrium and had no interference with the normal sexual cycle. This effect may be directly related to intervening the local estrogen signaling pathway of the endometrial myometrial interface (EMI). It may also be associated with the myometrium cells' estrogen resistance via GPER/EGFR signaling pathway.
Conclusion: The endocrine mechanism of GZFLW in treating AM was explored based on network pharmacology, molecular docking, and animal experiments, which provided a theoretical basis for the clinical application of GZFLW.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8563128 | PMC |
http://dx.doi.org/10.1155/2021/6034147 | DOI Listing |
J Adv Res
January 2025
Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:
Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.
Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).
J Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Introduction: The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Clinical Epidemiology and Research Center (CERC), Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy, and Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany (H.J.S.).
Description: Artificial intelligence (AI) has been defined by the High-Level Expert Group on AI of the European Commission as "systems that display intelligent behaviour by analysing their environment and taking actions-with some degree of autonomy-to achieve specific goals." Artificial intelligence has the potential to support guideline planning, development and adaptation, reporting, implementation, impact evaluation, certification, and appraisal of recommendations, which we will refer to as "guideline enterprise." Considering this potential, as well as the lack of guidance for the use of AI in guidelines, the Guidelines International Network (GIN) proposes a set of principles for the development and use of AI tools or processes to support the health guideline enterprise.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.
Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!