A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network Analysis of Insomnia in Chinese Mental Health Professionals During the COVID-19 Pandemic: A Cross-Sectional Study. | LitMetric

Network Analysis of Insomnia in Chinese Mental Health Professionals During the COVID-19 Pandemic: A Cross-Sectional Study.

Nat Sci Sleep

Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, People's Republic of China.

Published: October 2021

Purpose: The coronavirus disease 2019 (COVID-19) pandemic is associated with increased risk of insomnia symptoms (insomnia hereafter) in health-care professionals. Network analysis is a novel approach in linking mechanisms at the symptom level. The aim of this study was to characterize the insomnia network structure in mental health professionals during the COVID-19 pandemic.

Patients And Methods: A total of 10,516 mental health professionals were recruited from psychiatric hospitals or psychiatric units of general hospitals nationwide between March 15 and March 20, 2020. Insomnia was assessed with the insomnia severity index (ISI). Centrality index (ie, strength) was used to identify symptoms central to the network. The stability of network was examined using a case-dropping bootstrap procedure. The network structures between different genders were also compared.

Results: The overall network model showed that the item ISI7 (interference with daytime functioning) was the most central symptom in mental health professionals with the highest strength. The network was robust in stability and accuracy tests. The item ISI4 (sleep dissatisfaction) was connected to the two main clusters of insomnia symptoms (ie, the cluster of nocturnal and daytime symptoms). No significant gender network difference was found.

Conclusion: Interference with daytime functioning was the most central symptom, suggesting that it may be an important treatment outcome measure for insomnia. Appropriate treatments, such as stimulus control techniques, cognitive behavioral therapy and relaxation training, could be developed. Moreover, addressing sleep satisfaction in treatment could simultaneously ameliorate daytime and nocturnal symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560171PMC
http://dx.doi.org/10.2147/NSS.S326880DOI Listing

Publication Analysis

Top Keywords

mental health
16
health professionals
16
network
9
network analysis
8
insomnia
8
professionals covid-19
8
covid-19 pandemic
8
insomnia symptoms
8
interference daytime
8
daytime functioning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!