We previously show that L-Cysteine administration significantly suppresses hypoxia-ischemia (HI)-induced neuroinflammation in neonatal mice through releasing HS. In this study we conducted proteomics analysis to explore the potential biomarkers or molecular therapeutic targets associated with anti-inflammatory effect of L-Cysteine in neonatal mice following HI insult. HI brain injury was induced in postnatal day 7 (P7) neonatal mice. The pups were administered L-Cysteine (5 mg/kg) at 24, 48, and 72 h post-HI. By conducting TMT-based proteomics analysis, we confirmed that osteopontin (OPN) was the most upregulated protein in ipsilateral cortex 72 h following HI insult. Moreover, OPN was expressed in CD11b/CD45 cells and infiltrating CD11b/CD45 cells after HI exposure. Intracerebroventricular injection of OPN antibody blocked OPN expression, significantly attenuated brain damage, reduced pro-inflammatory cytokine levels and suppressed cerebral recruitment of CD11b/CD45 immune cells following HI insult. L-Cysteine administration reduced OPN expression in CD11b/CD45 immune cells, concomitant with improving the behavior in Y-maze test and suppressing cerebral recruitment of CD11b/CD45 immune cells post-HI insult. Moreover, L-Cysteine administration suppressed the Stat3 activation by inducing S-sulfhydration of Stat3. Intracerebroventricular injection of Stat3 siRNA not only decreased OPN expression, but also reversed HI brain damage. Our data demonstrate that L-Cysteine administration effectively attenuates the OPN-mediated neuroinflammation by inducing S-sulfhydration of Stat3, which contributes to its anti-inflammatory effect following HI insult in neonatal mice. Blocking OPN expression may serve as a new target for therapeutic intervention for perinatal HI brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253102PMC
http://dx.doi.org/10.1038/s41401-021-00794-2DOI Listing

Publication Analysis

Top Keywords

neonatal mice
20
l-cysteine administration
16
opn expression
16
inducing s-sulfhydration
12
s-sulfhydration stat3
12
cd11b/cd45 immune
12
immune cells
12
insult neonatal
8
proteomics analysis
8
brain injury
8

Similar Publications

Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.

View Article and Find Full Text PDF

Background: Equine herpesvirus type 1 (EHV1) is a ubiquitous viral pathogen infecting the equine population worldwide. EHV1 infection causes respiratory illness, abortion, neonatal foal mortality, and myeloencephalopathy. The currently available modified live EHV1 vaccines have safety and efficacy limitations.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.

View Article and Find Full Text PDF

In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors.

Stem Cell Res Ther

January 2025

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.

Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!