In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP) and the Na/K-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP) that is supported by a sub-membranous ß-Spectrin cytoskeleton. ß-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569210 | PMC |
http://dx.doi.org/10.1038/s41467-021-26462-x | DOI Listing |
PLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Developmental Biology and Neurobiology, Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.
View Article and Find Full Text PDFNeuroscience
February 2025
Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China. Electronic address:
Myelination is the process by which oligodendrocytes ensheathe axons to form myelin sheaths. Myelination is a crucial aspect of brain development and is closely associated with central nervous system abnormalities. However, previous studies have found that advanced maternal age might affect the myelination of offspring, potentially through the pathway of disrupting DNA methylation levels in the offspring's hippocampus.
View Article and Find Full Text PDFMol Biol Rep
November 2024
Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required.
View Article and Find Full Text PDFNeurosci Bull
November 2024
School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!