A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionamqehph8kqpbj47qihv0iiq4ktl0u1j0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Applications of CRISPR technology to lung cancer research. | LitMetric

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.02610-2021DOI Listing

Publication Analysis

Top Keywords

applications crispr
4
crispr technology
4
technology lung
4
lung cancer
4
applications
1
technology
1
lung
1
cancer
1

Similar Publications

The ABF4-bHLH28-COMT5 module regulates melatonin synthesis and root development for drought tolerance in citrus.

Plant J

March 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.

Melatonin significantly influences the regulation of plant growth, development, and stress tolerance. However, the regulatory mechanisms underlying melatonin accumulation for drought tolerance in citrus are not fully understood. In this study, we first demonstrated that application of exogenous melatonin resulted in better drought tolerance by reducing water loss and maintaining redox homeostasis.

View Article and Find Full Text PDF

Silk proteins, as natural macromolecular substances, hold significant potential for applications in biomaterials and biomedical fields. The expression of silk protein genes exhibits spatiotemporal specificity. Broad Complex (BrC), a key primary response factor to 20-hydroxyecdysone, plays a crucial role in metamorphosis.

View Article and Find Full Text PDF

The deployment of artificial intelligence (AI) is revolutionizing neuropharmacology and drug development, allowing the modulation of neurotransmitter systems at the personal level. This review focuses on the neuropharmacology and regulation of neurotransmitters using predictive modeling, closed-loop neuromodulation, and precision drug design. The fusion of AI with applications such as machine learning, deep-learning, and even computational modeling allows for the real-time tracking and enhancement of biological processes within the body.

View Article and Find Full Text PDF

Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing.

Mol Cancer

March 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.

As promising noninvasive biomarkers, nucleic acids provide great potential to innovate cancer early detection methods and promote subsequent diagnosis to improve the survival rates of patient. Accurate, straightforward and sensitive detection of such nucleic acid-based cancer biomarkers in complex biological samples holds significant clinical importance. However, the low abundance creates huge challenges for their routine detection.

View Article and Find Full Text PDF

Programmable solid-state condensates for spatiotemporal control of mammalian gene expression.

Nat Chem Biol

March 2025

Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, China.

Engineering of nuclear condensates with chemically inducible gene switches is highly desired but challenging for precise and on-demand regulation of mammalian gene expression. Here, we harness the phase-separation capability of biomolecular condensates and describe a versatile strategy to chemically program ligand-dependent gene expression at various stages of interest. By engineering synthetic anchor proteins capable of tethering various genetically encoded condensate structures toward different cellular compartments or gene products of interest, inducible regulation of transcriptional and translational activities was achieved at different endogenous and episomal loci using the same sets of anchor proteins and synthetic solid-state condensates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!