The palm oil mill effluent (POME) from palm milling oil activities is discharged into various water bodies which poses several environmental problems including turbidity, increases COD and BOD, adds oil and grease, increases total nitrogen, and other pollutants. Therefore, it requires effective treatment to remove the pollutants before disposal. The objective was to critically discuss the performance of POME pretreatments along with their limitations. To offer a coverage on the present less efficient technologies, the opportunities and challenges of advanced pretreatments that combine magnetic materials and natural composites as adsorbents are comprehensively reviewed here. Moreover, potential of various magnetic materials for POME pretreatment has been described. Several existing pretreatment methods such as physical pretreatments, chemical pretreatments, coagulation-flocculation, and adsorption can remove pollutant content from POME with certain limitations and the use of magnetic composite adsorbents can enhance the treatment efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126239DOI Listing

Publication Analysis

Top Keywords

palm oil
8
oil mill
8
mill effluent
8
magnetic materials
8
advances pretreatment
4
pretreatment technology
4
technology handling
4
handling palm
4
oil
4
effluent challenges
4

Similar Publications

Smallholder farmers produce over 40% of global palm oil, the world's most traded and controversial vegetable oil. Awareness of the effects of palm oil production on ecosystems and human communities has increased drastically in recent years, with ever louder calls for the private and public sector to develop programs to support sustainable cultivation by smallholder farmers. To effectively influence smallholder practices and ensure positive social outcomes, such schemes must consider the variety in perspectives of farmers and align with their priorities.

View Article and Find Full Text PDF

A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.

View Article and Find Full Text PDF

Tropical peatlands are significant sources of methane (CH₄), but their contribution to the global CH₄ budget remains poorly quantified due to the lack of long-term, continuous and high-frequency flux measurements. To address this gap, we measured net ecosystem CH exchange (NEE-CH) using eddy covariance technique throughout the conversion of a tropical peat swamp forest to an oil palm plantation. This encompassed the periods before, during and after conversion periods from 2014 to 2020, during which substantial environmental shifts were observed.

View Article and Find Full Text PDF

The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil () has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!