A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and antiviral evaluation of cytisine derivatives against dengue virus types 1 and 2. | LitMetric

Synthesis and antiviral evaluation of cytisine derivatives against dengue virus types 1 and 2.

Bioorg Med Chem Lett

Department of Medical Laboratory Science and Biotechnology, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC; Department of Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC. Electronic address:

Published: December 2021

Dengue virus (DENV) causes about 50-100 million cases per year worldwide. However, there is still a big challenge in developing antiviral drugs against DENV infection. Some derivatives of alkaloid (-)-cytisine, like other alkaloid analogs, have been proposed for their antiviral potential. This study investigated antiviral activity and mechanisms of the cytisine derivatives, and discovered the structure-activity relationship against DENV. The antiviral assays were performed using one strain of DENV1 and DENV2, and two cell lines Vero E6 and A549. The structure-activity relationship of the effective compounds was also evaluated using combination of time-of-addition/removal assay and molecular docking. Compounds 3, 4, 12 (N-allylcytisine-3-thiocarbamide), 16, and 20 exhibited the high antiviral activity with IC values of lower than 3 μM against DENV1 and DENV2. Of them, the derivative 12 showed the highest antiviral activities against DENV1 (IC = 0.14 μM) and DENV-2 (IC = <0.1 μM), exhibiting the potent inhibition on virus attachment and entry stages. Meanwhile, the compounds 4 and 20 had a strong inhibition at the post-entry stage (IC = <0.1 μM). A correlation between the experimental pIC values and predicted pKi calculated by docking of compounds into DENV E protein was significant, correlating with the impact of compound 12 on the attachment stage, but compounds 4, and 20 on post-entry stage. The results provided the insight into the directions of synthetic modifications of starting (-)-cytisine as the inhibitors of DENV E protein at attachment and entry stages of DENV life cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.128437DOI Listing

Publication Analysis

Top Keywords

cytisine derivatives
8
dengue virus
8
antiviral activity
8
structure-activity relationship
8
denv1 denv2
8
antiviral
6
synthesis antiviral
4
antiviral evaluation
4
evaluation cytisine
4
derivatives dengue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!