Microglial M1 activation is detrimental to stroke outcomes. Recent studies have shown that circulating small extracellular vesicles (sEVs) can deliver miRNAs to target cells and regulate recipient cell functions. Herein, we tested the hypothesis that miRNA delivery by serum sEVs after cerebral ischemia/reperfusion (I/R) injury promote microglial M1 activation, demonstrating that serum sEVs from middle cerebral artery occlusion (MCAO) mice promoted proliferation and M1 activation of BV2 microglia. To explore the underlying mechanism of serum sEVs-mediated microglial activation in the early phase of cerebral I/R injury, we examined the effects of ischemic brain injury on the serum sEVs miRNAs profile in a mouse MCAO model using small RNAseq. Of the 1257 detected miRNA replications, the levels of 72 were significantly modulated. Bioinformatics analysis revealed that a panel of miRNAs was closely associated with inflammation, and in vitro experiments demonstrated that serum sEVs from MCAO mice could effectively transfer inflammatory miRNAs to BV2 microglia. Collectively, our data suggested that miRNAs delivered by serum sEVs after cerebral I/R injury promoted microglial M1 activation. The identification of microglial activation regulators in future studies will give rise to more effective treatments for stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.136307DOI Listing

Publication Analysis

Top Keywords

microglial activation
20
serum sevs
20
i/r injury
12
small extracellular
8
extracellular vesicles
8
cerebral ischemia/reperfusion
8
sevs cerebral
8
mcao mice
8
bv2 microglia
8
cerebral i/r
8

Similar Publications

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

Microglial galectin-3 increases with aging in the mouse hippocampus.

Korean J Physiol Pharmacol

January 2025

Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea.

Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood.

View Article and Find Full Text PDF

Ultrasmall iron-gallic acid coordination polymer nanoparticles for scavenging ROS and suppressing inflammation in tauopathy-induced Alzheimer's disease.

Biomaterials

December 2024

Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. Electronic address:

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies.

View Article and Find Full Text PDF

Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia.

Annu Rev Biomed Eng

January 2025

2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:

Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!