Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121255DOI Listing

Publication Analysis

Top Keywords

cur
10
bioactivity cancer
8
cancer cells
8
cur nps
8
nps compared
8
compared free
8
nps
6
curcumin-tannic acid-poloxamer
4
acid-poloxamer nanoassemblies
4
nanoassemblies enhance
4

Similar Publications

Designing and Fabrication of Nano-Hydroxyapatite and Curcumin-Loaded Chitosan/PVA Nanofibrous Mats for Potential Use as Wound Dressing Biomaterials.

Nanomaterials (Basel)

January 2025

Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e Fotoreattività (ISOF), Via Piero Gobetti, 101, 40129 Bologna, Italy.

Chitosan/polyvinyl alcohol nanofibrous mats loaded with nano-hydroxyapatite and/or curcumin are successfully fabricated by the electrospinning method for the first time. Nano-hydroxyapatite is prepared by the co-precipitation method. The XRD pattern of calcined powder at 700 °C for 2 h reveals the presence of hydroxyapatite as a sole phase.

View Article and Find Full Text PDF

Objectives: This experiment was carried out to investigate the protective effects of curcumin (CUR) on testicular damage induced by the valproic acid (VPA) administration.

Materials And Methods: Male Wistar-Albino rats (n=28, 250-300 g) were randomly divided into four groups: Control (1 ml saline, oral), VPA (500 mg/kg, IP), CUR (200 mg/kg, oral), or VPA+CUR (500 mg/kg, VPA, IP plus 200 mg/kg CUR, oral). The treatments were applied for 14 days.

View Article and Find Full Text PDF

Improving the prebiotic activity and oxidative stability of carboxymethyl curdlan - quercetin conjugates stabilized Pickering emulsions for the colonic targeting delivery of curcumin.

Food Res Int

February 2025

DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China. Electronic address:

The carboxymethyl curdlan-quercetin conjugate (CMCD-QUE) was synthesized to stabilize curcumin (CUR) -loaded Pickering emulsions. The physicochemical properties, antioxidant activity, and prebiotic activity of CMCD-QUE were investigated. The effects of different concentrations of CMCD-QUE on CUR-loaded emulsions were also explored.

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown great promise as pH-responsive drug delivery systems, with considerable potential for targeted cancer therapy. In this study, we synthesized a novel curcumin-loaded MOF, named UWO-2 (CUR@UWO-2), and developed its biocomposite form, CS-κ-Cr/CUR@UWO-2, by coating it with chitosan (CS) and κ-carrageenan (κ-Cr). Structural analysis through powder X-ray diffraction (PXRD) confirmed the successful synthesis of UWO-2 and the incorporation of CUR within the MOF structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!