The performance of naphthalene (NAP) degradation in peroxodisulfate (PDS) and peroxymonosulfate (PMS) oxidation systems by nano zero valent iron (nZVI) combined with citric acid (CA) activation was reported in aqueous solution and soil slurry medium. The results in aqueous solution tests indicated that 98.1% and 98.9% of NAP were individually degraded in PDS/nZVI/CA and PMS/nZVI/CA systems within 2 h when the dosages of PDS, PMS, nZVI and CA were 1.0 mM, 0.1 mM, 0.2 mM and 0.1 mM, respectively. The consequences of scavenging tests and electron paramagnetic resonance detection demonstrated that HO• and SO• were the key factors on NAP removal. The presence of surfactants could consume ROSs and inhibit NAP removal. In addition, GC-MS was applied for the determination of NAP degradation intermediates, and three possible NAP degradation pathways were proposed in PDS oxidation process and two pathways in PMS oxidation process, respectively. The results in soil slurry medium showed that the presence of CA could promote the dissolution of soil minerals and the desorption of NAP from soil medium. 93.5% and 96.8% degradation of NAP were obtained in PDS/nZVI/CA and PMS/nZVI/CA systems within 24 h. Besides, the existence of DOM in soil could promote Fe(II)/Fe(III) cycle and NAP degradation through electron transfer. Based on the NAP degradation performance in the actual groundwater and soil medium, the above findings could provide basis and strong support for the potential application of PDS/nZVI/CA and PMS/nZVI/CA systems in the remediation of NAP contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.132761 | DOI Listing |
Nat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFMed J Armed Forces India
December 2024
Medical Cadet, Armed Forces Medical College, Pune, India.
Background: Sleep deprivation leads to decreased performance, alertness and degradation in the health status of a person. Often the person remains unaware of the reduced alertness and may end up taking inaccurate decisions. There was a need to study the sleep duration of college goers and to study the effect of total night-time sleep duration on daytime Electroencephalogram (EEG) characteristics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India.
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Horticulture, Northwest A & F University, Yangling 712100, China. Electronic address:
Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China.
Although traditionally regarded as an impediment, the protein corona can facilitate the advancement of targeted drug delivery systems. This study presents an innovative approach for targeting acute myeloid leukemia (AML) using nanoparticles with agglutinated protein (NAPs). Agglutinated transferrin and C3b in NAPs selectively bind to CD71 and CD11b, receptors that are overexpressed on myeloid leukemic cells compared to nonmalignant cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!