Factors influencing the microbial composition of human milk.

Semin Perinatol

University of Helsinki and Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland. Electronic address:

Published: December 2021

Aside from nutritional components, human milk is rich in microorganisms. Through breastfeeding these microorganisms are introduced to the infant gut where they may transiently or persistently colonize it. Therefore, the human milk microbiota may be an important factor which shapes the infant gut microbiota further influencing infant health and disease. In the current review we aim to give a brief updated insight into the putative origin of the human milk microbiota, its constituents and the possible factors that shape it. Understanding the factors that determine the human milk microbiota composition and function will aid developing optimal postnatal feeding and intervention strategies to reduce the risk of communicable and noncommunicable diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semperi.2021.151507DOI Listing

Publication Analysis

Top Keywords

human milk
20
milk microbiota
12
infant gut
8
human
5
milk
5
factors influencing
4
influencing microbial
4
microbial composition
4
composition human
4
milk nutritional
4

Similar Publications

Background: Lack of knowledge regarding zoonotic transmission, prevention and control measures is a potential high risk for the occurrence of zoonotic diseases.

Objective: The study aimed to assess knowledge, attitude and practices of dairy farm participants concerning zoonoses.

Animals: A cross-sectional study was conducted from March to August 2022 in and around Sodo town, using a questionnaire among dairy farm participants (n = 123).

View Article and Find Full Text PDF

Differences in immune cells and gene expression in human milk by parity on integrated scRNA sequencing.

Clin Exp Pediatr

January 2025

Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States.

Background: Human breast milk (HBM) is an important source of tolerogenic immune mediators that influence the infant immune system. HBM-derived immune components are affected by various factors; however, few studies have examined the relationship between parity and immune cell profiles of HBM.

Purpose: This study aimed to clarify the effects of parity on HBM immune cell heterogeneity and gene expression by integrating and analyzing publicly available single-cell RNA sequencing datasets.

View Article and Find Full Text PDF

Whey proteins, the most abundant proteins in human milk (HM), play a vital role in the growth and development of infants. This review first elaborates on the main components of HM whey proteins, including various proteins with specific functions, and details the functions of these proteins in terms of infant nutrition, immunity, as well as growth and development. Secondly, it analyzes factors that affect HM whey proteins, such as maternal differences, dietary habits, and geographical differences.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

Influenza, a major "One Health" threat, has gained heightened attention following recent reports of highly pathogenic avian influenza in dairy cattle and cow-to-human transmission in the USA. This review explores general aspects of influenza A virus (IAV) biology, its interactions with mammalian hosts, and discusses the key considerations for developing vaccines to prevent or curtail IAV infection in the bovine mammary gland and its spread through milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!