Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Trees in the urban right-of-way areas have increasingly been considered part of a suite of green infrastructure practices used to manage stormwater runoff. A paired-catchment experimental design (with street tree removal as the treatment) was used to assess how street trees affect major hydrologic fluxes in a typical residential stormwater collection and conveyance network. The treatment consisted of removing 29 green ash (Fraxinus pennsylvanica) and two Norway maple (Acer platanoides) street trees from a medium-density residential area. Tree removal resulted in an estimated 198 m increase in surface runoff volume compared to the control catchment over the course of the study. This increase accounted for 4% of the total measured runoff after trees were removed. Despite significant changes to runoff volume (p ≤ 0.10), peak discharge was generally not affected by tree removal. On a per-tree basis, 66 L of rainfall per m of canopy was lost that would have otherwise been intercepted and stored. Runoff volume reduction benefit was estimated at 6376 L per tree. These values experimentally document per-capita retention services rendered by trees over a growing season with 42 storm events. These values are within the range reported by previous studies, which largely relied on simulation. This study provides catchment scale evidence that reducing stormwater runoff is one of many ecosystem services provided by street trees. This study quantifies these services, based on site conditions and a mix of deciduous species, and serves to improve our ability to account for this important yet otherwise poorly constrained hydrologic service. Engineers, city planners, urban foresters, and others involved with the management of urban stormwater can use this information to better understand tradeoffs involved in using green infrastructure to reduce urban runoff burden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!