Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, based on the dual catalytic properties of copper (Cu) particles for methanol oxidation and persulfate initiated radical polymerization, a temperature-controlled catalytic electrode, defined the PNIPAM-Cu@CP, was constructed by electrodepositing Cu particles on a carbon paper electrode and triggering the polymerization of the temperature-sensitive polymer N-isopropylacrylamide (PNIPAM) on the surface of the electrode, which is expected to be applicated in the micro-direct methanol fuel cell (DMAC) for detection of methanol crossover and also has temperature recognition and high-temperature self-protection functions. Cu particles and PNIPAM were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) for their specific structure and morphology. The cyclic voltammetry (CV) results showed the proposed electrode as a temperature-controlled switch-like methanol sensor, has a wide linear range (1-300 mM and 300-1200 mM), excellent sensitivity (72.8 μA cm mM and 11.5 μA cm mM) and a low detection limit of 0.3 mM for methanol. In addition, the sensor also has excellent selectivity and temperature-triggered switchable electrocatalytic activity. The efficient and simple preparation method of the electrode is expected to be used in the development of a methanol sensor for real-time methanol detection in micro-DMAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122888 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!