The development of a semi-automated and rapid analytical technique for dermatological analysis has become a key aim of many medical and commercial entities through greater awareness of people to skin health and its importance in the 21st century. We present a proof-of-concept methodology demonstrating the use of validated non-destructive, in-situ (Nuclear Magnetic Resonance Spectroscopy) NMR techniques for characterisation and quantitation of (Natural Moisturising Factor) NMF compounds and actives from topical formulations. This quantitation is crucial for appropriate diagnosis of atopic dermatitis severity due to its association with reduced NMF abundance. This study is the first to combine diffusion NMR, semi-automated quantitation and ex-vivo skin samples to measure NMF and permeation of actives. We have shown that diffusion NMR allows for resolution between formulation components through determination of self-diffusion coefficients. We also demonstrate how the metabolomics software chenomx can be used to identify and quantitate individual NMF components. We show comparable results to previous literature on NMF layers in the skin, alongside reinforcing findings on permeation enhancers and heat effects on transdermal delivery of actives and formulation components. The presented methodology has shown great potential as an effective non-destructive, fast and versatile technique for dermatological analysis of physiology and actives, with future hardware and software developments in NMR making the future of dermatological analysis via NMR very promising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122980DOI Listing

Publication Analysis

Top Keywords

dermatological analysis
12
characterisation quantitation
8
technique dermatological
8
diffusion nmr
8
formulation components
8
nmr
6
actives
5
nmf
5
proof-of-concept study
4
study utilising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!