Background: The present availability of full genome sequences of a broad range of animal species across the whole range of evolutionary history enables one to ask questions as to the distribution of genes across the chromosomes. Do newly recruited genes, as new clades emerge, distribute at random or at non-random locations?

Results: We extracted values for the ages of the human genes and for their current chromosome locations, from published sources. A quantitative analysis showed that the distribution of newly-added genes among and within the chromosomes appears to be increasingly non-random if one observes animals along the evolutionary series from the precursors of the tetrapoda through to the great apes, whereas the oldest genes are randomly distributed.

Conclusions: Randomization will result from chromosome evolution, but less and less time is available for this process as evolution proceeds. Much of the bunching of recently-added genes arises from new gene formation as paralogues in gene families, near the location of genes that were recruited in the preceding phylostratum. As examples we cite the KRTAP, ZNF, OR and some minor gene families. We show that bunching can also result from the evolution of the chromosomes themselves when, as for the KRTAP genes, blocks of genes that had previously been on disparate chromosomes become linked together.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570013PMC
http://dx.doi.org/10.1186/s12864-021-08066-3DOI Listing

Publication Analysis

Top Keywords

genes
11
genes chromosomes
8
gene families
8
chromosomes
5
evolution
4
evolution earliest
4
earliest tetrapoda
4
tetrapoda newly-recruited
4
newly-recruited genes
4
genes increasingly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!