A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic Monte Carlo method applied to micrometric particle detachment mechanisms by aerodynamic forces. | LitMetric

Kinetic Monte Carlo method applied to micrometric particle detachment mechanisms by aerodynamic forces.

J Phys Condens Matter

INFAP, CONICET, Departamento de Física, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW, San Luis, Argentina.

Published: November 2021

The formulation of a kinetic Monte Carlo simulation to account for the different possible mechanisms present in the problem of resuspension of aerosol particles is addressed as an extension of a former model Benito(201626-37). The re-entrainment of micrometer particles to airflow when detached from a surface by aerodynamic forces is modeled using the similitude of the problem with the desorption process from heterogeneous surfaces. Depending on the relative role of the intervening forces, three main mechanisms for movement initiation can be present:,and. Three different transition probabilities are defined for each mechanism and the corresponding transition rates calculated for the kinetic process to be simulated. The decisive factor for the development of the model is to set an appropriate dynamical hierarchy to simulate correctly the evolution of the transition rates as the airflow velocity increases, reflecting the stochastic nature of the process, not always fully captured by other Monte Carlo approaches. The model is applied to spherical and elongated particles on a flat surface, reproducing qualitatively well the experimental trends found by other authors for the case of particles with different shapes. It is also demonstrated that, for elongated particles, the main mechanism assisting the detachment is not rolling but sliding, underscoring the need for an adequate choice of the particles shape and detachment mechanism when looking for the critical conditions for particle removal from surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac3690DOI Listing

Publication Analysis

Top Keywords

monte carlo
12
kinetic monte
8
aerodynamic forces
8
transition rates
8
elongated particles
8
particles
6
carlo method
4
method applied
4
applied micrometric
4
micrometric particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!