Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities., the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20m polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40m in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50m) PU film. Plasma polymerized 3.4-ethylenedioxythiophene was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both explanted and intact inside an enucleated eye, were used.A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate.electrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed.Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ac36abDOI Listing

Publication Analysis

Top Keywords

electrode arrays
16
intact retina
12
retina
9
inside enucleated
8
carbon electrodes
8
photo-electrical stimulation
8
electrode
7
intact
5
recording
5
electrophysiological investigation
4

Similar Publications

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!