Owing to their structural and functional tunability, the preparation of multivariate metal-organic frameworks (MTV-MOFs) and investigation of their potential application has become a hot topic in fields of environment and energy. To achieve more adsorption and removal performance, a series of multivariate Zr-MOFs (TCPP@MOF-808s) were prepared via mixed-ligands strategy for the first time. The morphology, as well as adsorption and removal properties of TCPP@MOF-808s can be controlled by adjusting ratio of the linkers. 57%TCPP@MOF-808 could provide ideal appearance with excellent stability. By using 57%TCPP@MOF-808 as sorbent, a dispersive solid-phase extraction (dSPE) was developed for extraction of endocrine disrupting compounds (EDCs) including BPA, 17β-E2, 17α-E2, E1, and HEX from environmental water prior to HPLC analysis. The pseudo-second-order model can describe the adsorption kinetic data well. Using Langmuir isotherm model, the maximum adsorption capacities of BPA, 17β-E2, 17α-E2, and E1 were calculated as 94.34, 104.17, 109.89, and 121.95 mg·g, respectively. The LODs for the analysis of EDCs with HPLC-DAD by using 57%TCPP@MOF-808 as sorbent were achieved in the range of 0.01-0.03 ng·mL. The recoveries were obtained in the range of 74.63-98.00%. Enrichment factors were calculated in the range of 146-312. This work provides an effective strategy for design and preparation of multifunctional nanomaterials to improve their potential applications in the detection of environmental pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127559DOI Listing

Publication Analysis

Top Keywords

preparation multivariate
8
metal-organic frameworks
8
endocrine disrupting
8
disrupting compounds
8
adsorption removal
8
57%tcpp@mof-808 sorbent
8
bpa 17β-e2
8
17β-e2 17α-e2
8
adsorption
5
multivariate zirconia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!