We extended, for the first time, the Michaelis-Menten (M-M) model to describe the kinetics of photosystem I (PSI) complexes using light as a substrate. Our work is novel as it can be useful for studying the phenomenon of "state transitions" because it quantifies the affinity of light to PSI reaction centers depending on the associated light harvesting complex II (LHCII) antennas. We verified our models by measuring the PSI activity as a function of light intensity using an oxygen electrode for chloroplast from plants grown in low light conditions and treated with far red light. We determined the kinetics constant K for: PSI-LHCI, PSI-LHCI-LHCII and PSI-PSII megacomplexes and have shown that K for PSI located in the megacomplexes was smaller in magnitude than PSI-LHCI, thus demonstrating that LHCII antennas are functionally associated with PSI. The parameter [S]used in our models is the equivalent of M-M constant. Far red light increases [S], which indicates that transition from state 1 to state 2 leads to an energy gain while reaching the PSI reaction centers. We also observed that redistribution of the absorbed excitation energy is realized not only by LHCII migration but also by association of the photosystems in the megacomplexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2021.112336 | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Biology, University of New Brunswick, Fredericton E3B5A3, NB, Canada. Electronic address:
Under ideal conditions, Chlamydomonas reinhardtii can photoacclimate to excess light through various short- and long-term mechanisms. However, how microalgae handle excess light stress once they exit exponential growth, and especially in stationary phase, is less understood. Our study explored C.
View Article and Find Full Text PDFPlant J
December 2024
Aix Marseille Univ., CEA, CNRS, BIAM, CEA/Cadarache, F-13115, Saint-Paul-lez-Durance, France.
Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development.
View Article and Find Full Text PDFPlant Commun
October 2024
School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK. Electronic address:
For optimum photosynthetic productivity, it is crucial for plants to swiftly transition between light-harvesting and photoprotective states as light conditions change in the field. The PsbS protein plays a pivotal role in this process by switching the light-harvesting antenna, light-harvesting complex II (LHCII), into the photoprotective state, energy-dependent chlorophyll fluorescence quenching (qE), to avoid photoinhibition in high-light environments. However, the molecular mechanism by which PsbS acts upon LHCII has remained unclear.
View Article and Find Full Text PDFPlant J
November 2024
Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
Chlorophylls a and b (Chl a and b) are involved in light harvesting, photochemical reactions, and electron transfer reactions in plants and green algae. The core complexes of the photosystems (PSI and PSII) associate with Chl a, while the peripheral antenna complexes (LHCI and LHCII) bind Chls a and b. One of the final steps of Chl biosynthesis is the conversion of geranylgeranylated Chls (Chls) to phytylated Chls by geranylgeranyl reductase (GGR).
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
The synthesis and assembly of functioning photosynthetic complexes in chloroplasts developing from etioplasts during the de-etiolation of angiosperm seedlings are imperative for the plant's autotrophic lifestyle. This study compared the de-etiolation process under monochromatic red or blue light of equal photon flux density during a 24-h illumination period of etiolated Arabidopsis seedlings. The aim was to elucidate the impact of these light wavelengths on the etioplast-to-chloroplast transformation and the initiation of light-dependent photosynthetic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!