The preparation of fluorene(bisthiophene)-based fluorescent nanofibers for nitroaromatic explosive detection provides a convenient rapid and low-cost strategy aiming at forensic applications. Polycaprolactone (PCL) and fluorene(bisthiophene) derivative (FBT) nanofibers were obtained by electrospinning technique as a free-standing mat and characterized by SEM, FTIR, thermal analysis and fluorescence spectroscopy. The PCL/FBT nanofibers presented high sensitivity towards 2,4,6-trinitrotoluene (TNT) and picric acid (PA), with fluorescence quenching (turn-off mechanism), and selectivity to another kind of explosives. The free-standing mats were used as a cloth strip that was swiped on surfaces contaminated with TNT traces allowing its visual detection under UV light source. These findings are particularly important for the development of a facile and promising strategy to assembly portable optical devices for nitroaromatic explosive detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.forsciint.2021.111056DOI Listing

Publication Analysis

Top Keywords

nitroaromatic explosive
12
explosive detection
12
fluorenebisthiophene derivative
8
"turn-off" fluorescent
4
fluorescent sensor
4
sensor based
4
based electrospun
4
electrospun polycaprolactone
4
nanofibers
4
polycaprolactone nanofibers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!