A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical properties and biomedical application characteristics of degradable polylactic acid-Mg-Ca(PO) three-phase composite. | LitMetric

Polylactic acid (PLA), pure magnesium powder, and calcium phosphate powder were used to form a three-phase degradable biomedical composite. The effects of various powder proportions in polylactic acid-Mg-Ca(PO) composites were analyzed through mechanical and biological tests, which revealed that both the tensile and impact strength of the composite increased. Additionally, ductility presented only after a small proportion of powder was added. Hardness slightly increased because of dispersion strengthening. Furthermore, the addition of pure magnesium and calcium phosphate accelerated the degradation rate, and biocompatible salts were generated after degradation, which can improve healing and renewal in bone tissue. None of the composites exhibited cytotoxicity, meeting biological safety requirements. Overall, PLA10M10C (10 wt.% Mg, 10 wt.% Ca(PO)) exhibited superior performance. Accordingly, PLA10M10C can serve as a reference for degradable biomedical material applications in orthopedic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104949DOI Listing

Publication Analysis

Top Keywords

polylactic acid-mg-capo
8
pure magnesium
8
calcium phosphate
8
degradable biomedical
8
mechanical properties
4
properties biomedical
4
biomedical application
4
application characteristics
4
characteristics degradable
4
degradable polylactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!