Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571525 | PMC |
http://dx.doi.org/10.1016/j.tranon.2021.101260 | DOI Listing |
Transl Oncol
January 2022
Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Medical Science Bldg, 1600 NW 10th Ave, Room 4007, Miami, FL 33136-1015, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Veterans Affairs, Miami Healthcare System, Miami, FL 33136, United States. Electronic address:
Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!