Objective: The objective of this study is to find out whether gadolinium accumulation in the dentate nucleus (DN) after repeated gadolinium-based contrast agent (GBCA) administration in multiple sclerosis (MS) patients is related to tissue alteration detectable on transcranial ultrasound.

Methods: In this case-control study, 34 patients (17 with, and 17 age-, sex-, MS severity-, and duration-matched participants without visually rated DN T1-hyperintensity) who had received 2-28 (mean, 11 ± 7) consecutive 1.5-Tesla MRI examinations with application of linear GBCA were included. Real-time MRI-ultrasound fusion imaging was applied, exactly superimposing the DN identified on MRI to calculate its corresponding echo-intensity on digitized ultrasound image analysis. In addition, cerebellar ataxia and cognitive performance were assessed. Correlation analyses were adjusted for age, MS duration, MS severity, and time between MRI scans.

Results: DN-to-pons T1-signal intensity-ratios (DPSIR) were larger in patients with visually rated DN T1-hyperintensity compared to those without (1.16 ± 0.10 vs 1.09 ± 0.06; p = 0.01). In the combined group, DPSIR correlated with the cumulative linear-GBCA dose (r = 0.49, p = 0.003), as did the DPSIR change on last versus first MRI (r = 0.59, p = 0.003). Neither DPSIR nor globus pallidus internus-to-thalamus T1-signal intensity-ratios were related to echo-intensity of corresponding ROI's. DPSIR correlated with the dysarthria (r = 0.57, p = 0.001), but no other, subscore of the International Cooperative Ataxia Rating Scale, and no other clinical score.

Conclusions: DN gadolinium accumulation is not associated with trace metal accumulation, calcification, or other tissue alteration detectable on ultrasound. A possible mild effect of DN gadolinium accumulation on cerebellar speech function in MS patients, suggested by present data, needs to be validated in larger study samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918138PMC
http://dx.doi.org/10.1007/s10072-021-05702-4DOI Listing

Publication Analysis

Top Keywords

gadolinium accumulation
12
multiple sclerosis
8
sclerosis patients
8
tissue alteration
8
alteration detectable
8
visually rated
8
rated t1-hyperintensity
8
t1-signal intensity-ratios
8
dpsir correlated
8
p = 0003 dpsir
8

Similar Publications

Background: Gadolinium-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI) to enhance image contrast by interacting with water molecules, thus improving diagnostic capabilities. However, understanding the residual accumulation of GBCA in tissues after administration remains an area of active research. This highlights the need for advanced analytical techniques capable of investigating interactions between GBCAs and biopolymers, such as type I collagen, which are abundant in the body.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Purpose: We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.

Materials And Methods: Twenty-one rabbits were included in the study.

View Article and Find Full Text PDF

The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!