Cycline-dependent kinase 4 (CDK4), an enzyme of the cycline dependent or Ser/Thr protein kinase family, plays a role in cell cycle progression (G1 phase) by phosphorylating a tumor suppressor protein called pRB. Alteration of this enzyme due to missense mutation/ nonsynonymous single nucleotide polymorphisms (nsSNPs) are responsible for various types of cancer progression, e.g. melanoma, lung cancer, and breast cancer. Hence, this study is designed to identify the malignant missense mutation of CDK4 from the single nucleotide polymorphism database (dbSNP) by incorporating computational algorithms. Out of 239 nsSNPs; G15S, D140Y and D140H were predicted to be highly malignant variants which may have a devastating impact on protein structure or function. We also found defective binding motif of these three mutants with the CDK4 inhibitor ribociclib and ATP. However, by incorporating molecular dynamic simulation, our study concludes that the superiority of G15S than the other two mutants (D140Y and D140H) in destabilizing proteins nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568134PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259691PLOS

Publication Analysis

Top Keywords

single nucleotide
12
identify malignant
8
nonsynonymous single
8
nucleotide polymorphisms
8
d140y d140h
8
computational structural
4
structural based
4
based approach
4
approach identify
4
malignant nonsynonymous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!