Dengue virus (DENV) non-structural protein 5 (NS5) is critical for viral RNA synthesis within endoplasmic reticulum (ER)-derived replication complexes in the cytoplasm; however a proportion of NS5 is known to be localized to the nucleus of infected cells. The importance of nuclear DENV NS5 on viral replication and pathogenesis is still unclear. We recently discovered a nuclear localization signal (NLS) residing in the C-terminal 18 amino acid (Cter) region of DENV NS5 and that a single NS5 P884T amino acid substitution adjacent to the NLS is sufficient to relocalize a significant proportion of DENV2 NS5 from the nucleus to the cytoplasm of infected cells. Here, studies show that the DENV2 NS5 P884T mutant replicates similarly to the parental wild-type infectious clone-derived virus while inducing a greater type I interferon and inflammatory cytokine response, in a manner independent of NS5's ability to degrade STAT2 or regulate SAT1 splicing. In both AG129 mouse and mosquito infection models, the P884T virus exhibits lower levels of viral replication only at early timepoints. Intriguingly, there appears to be a tendency for selection pressure to revert to the wild-type proline in P884T-infected , in agreement with the high conservation of the proline at this position of NS5 in DENV2, 3, and 4. These results suggest that the predominant nuclear localization of DENV NS5, while not required for viral RNA replication, may play a role in pathogenesis and modulation of the host immune response and contribute to viral fitness in the mosquito host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.1c00441 | DOI Listing |
Microorganisms
December 2024
Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.
, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA.
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated.
View Article and Find Full Text PDFPLoS One
December 2024
Bioinformatics and Cheminformatics Division, Scientific Research and Training Nepal Private Limited, Kaushaltar, Bhaktapur, Nepal.
Dengue poses a persistent and widespread threat with no effective antiviral drug available till now. Several inhibitors have been developed by targeting the viral non-structural proteins including methyl transferase (NS5) of the dengue virus with possible therapeutic values. In this work, virtual screening, molecular docking, molecular dynamics simulations (200 ns), and assessments of free energy changes have been carried out to identify potential candidates from a database of flavonoids (ca.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
Arthropod-borne viruses or arboviruses, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV) pose significant threats to public health. It is imperative to develop novel methods to control these mosquito-borne viral infections. We previously showed that insulin/insulin-like growth factor-1 signaling (IIS)-dependent activation of ERK and JAK-STAT signaling has significant antiviral activity in insects and human cells.
View Article and Find Full Text PDFDengue (DENV) and Zika virus (ZIKV), transmitted by Aedes mosquitoes, pose significant public health challenges. Effective treatments for these viruses remain elusive, highlighting the urgent need for new efficient antiviral therapies. This study explores prodigiosin, a microbial tripyrrole pigment, as an antiviral agent against both DENV and ZIKV employing advanced analytical approaches which integrate molecular docking, CASTp 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!