Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atomic layer deposition (ALD) is an enabling technology for encapsulating sensitive materials owing to its high-quality, conformal coating capability. Finding the optimum deposition parameters is vital to achieving defect-free layers; however, the high dimensionality of the parameter space makes a systematic study on the improvement of the protective properties of ALD films challenging. Machine-learning (ML) methods are gaining credibility in materials science applications by efficiently addressing these challenges and outperforming conventional techniques. Accordingly, this study reports the ML-based minimization of defects in an ALD-AlO passivation layer for the corrosion protection of metallic copper using Bayesian optimization (BO). In all experiments, BO consistently minimizes the layer defect density by finding the optimum deposition parameters in less than three trials. Electrochemical tests show that the optimized layers have virtually zero film porosity and achieve five orders of magnitude reduction in corrosion current as compared to control samples. Optimized parameters of surface pretreatment using Ar/H plasma, the deposition temperature above 200 °C, and 60 ms pulse time quadruple the corrosion resistance. The significant optimization of ALD layers presented in this study demonstrates the effectiveness of BO and its potential outreach to a broader audience, focusing on different materials and processes in materials science applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8603353 | PMC |
http://dx.doi.org/10.1021/acsami.1c14586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!