Importance: Real-world data sets that combine clinical and genomic data may be subject to left truncation (when potential study participants are not included because they have already passed the milestone of interest at the time of study recruitment). The lapse between diagnosis and molecular testing can present analytic challenges and threaten the validity and interpretation of survival analyses.

Observations: Effects of ignoring left truncation when estimating overall survival are illustrated using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative (GENIE BPC), and a straightforward risk-set adjustment approach is described. Ignoring left truncation results in overestimation of overall survival: unadjusted median survival estimates from diagnosis among patients with stage IV non-small cell lung cancer or stage IV colorectal cancer were overestimated by more than 1 year.

Conclusions And Relevance: Clinicogenomic data are a valuable resource for evaluation of real-world cancer outcomes and should be analyzed using appropriate methods to maximize their potential. Analysts must become adept at application of appropriate statistical methods to ensure valid, meaningful, and generalizable research findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190030PMC
http://dx.doi.org/10.1001/jamaoncol.2021.5153DOI Listing

Publication Analysis

Top Keywords

left truncation
12
clinical genomic
8
ignoring left
8
implications selection
4
selection bias
4
bias delayed
4
delayed study
4
study entry
4
entry clinical
4
genomic studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!