Regulation of Electrocatalytic Activity by Local Microstructure: Focusing on the Catalytic Active Zone.

Chemistry

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, P. R. China.

Published: February 2022

Traditional regulation methods of active sites have successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new methods to regulate the reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment. Instead of the traditional single active atom site, the active zone is more suitable for the actual electrochemical reaction process. According to this concept, the activity of electrocatalysts can be coordinated by multiple active atoms. This strategy is beneficial for understanding the relationship between material, structure, and catalysis, which realizes the design and synthesis of high-performance electrocatalysts. This review provides the research progress of this strategy for electrocatalytic reactions, with emphasis on their applications in oxygen evolution reaction, urea oxidation reaction, and carbon dioxide reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202103141DOI Listing

Publication Analysis

Top Keywords

active zone
16
local microstructure
12
active
9
catalytic activity
8
single active
8
microstructure active
8
electrocatalytic reactions
8
active atoms
8
zone
6
regulation electrocatalytic
4

Similar Publications

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Background: Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited.

Purpose: This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling.

View Article and Find Full Text PDF

The potential of and bacteriocins in synergistic control of .

Prep Biochem Biotechnol

January 2025

Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania.

has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including () and (), and represent a potential solution.

View Article and Find Full Text PDF

Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles.

View Article and Find Full Text PDF

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!