The present study investigates the mode specificity in the microsolvated OH˙(HO) + HCl reaction using on-the-fly direct dynamics simulation. To the best of our knowledge, this is the first study which aims to gain insights into the effect of microsolvation on the mode selectivity. Our investigation reveals that, similar to the gas phase OH˙ + HCl reaction, the microsolvated reaction is also predominantly affected by the vibrational excitation of the HCl mode, whereas the OH vibrational mode behaves as a spectator. Interestingly, in contrast to the behavior of the bare reaction, the integral cross section at the ground state of the microsolvated reaction decreases with an increase in translational energy. However, for the vibrational excited states, the reactivity of the microsolvated reaction is found to be higher than that of the bare reaction within the selected range of translational energies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01300aDOI Listing

Publication Analysis

Top Keywords

hcl reaction
12
microsolvated reaction
12
microsolvation mode
8
mode specificity
8
oh˙ho hcl
8
reaction
8
bare reaction
8
specificity oh˙ho
4
hcl
4
reaction study
4

Similar Publications

Evaluation of anion exchange resin for sorption of selenium (IV) from aqueous solutions.

BMC Chem

January 2025

Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.

In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies spotlight MBenes, a new type of two-dimensional material, but their production is still challenging.
  • Microcrystalline MoAlB was synthesized through a one-step gas-solid reaction at 450 °C, which can serve as a precursor for creating MoB MBenes.
  • This innovative method offers a more efficient, cost-effective way to produce layered materials, leading to uniform microcrystals and having promising implications for applications in catalysis and energy storage.
View Article and Find Full Text PDF

Platinum group metals (PGMs) are increasingly recycled from spent automotive catalysts due to their scarcity in nature. Many studies were developed using different leaching reagents in order to achieve greener benefits and reduce environmental pollution. This article reports for the first time direct comparison of leaching reagents on the efficiency of PGMs using microwave (MW) assisted heating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!