Colloidal crystallization using DNA provides a robust method for fabricating highly programmable nanoparticle superstructures with collective plasmonic properties. Here, we report on the DNA-guided fabrication of 3D plasmonic aggregates from polydisperse gold nanoprisms. We first construct 1D crystals DNA-induced and shape-directed face-to-face assembly of anisotropic gold nanoprisms. Using the near- thermal annealing approach that promotes long-range DNA-induced interaction and ordering, we then assemble 1D nanoprism crystals into a 3D nanoprism aggregate that exhibits a polycrystalline morphology with nanoscale ordering and microscale dimensions. The presence of closely packed nanoprism arrays over a large area gives rise to strong near-field plasmonic coupling and generates a high density of plasmonic hot spots within the 3D nanoprism aggregates that exhibit excellent surface-enhanced Raman scattering performance. The plasmonic 3D nanoprism aggregates demonstrate significant SERS enhancement (<10), and low detection limits (10M) with good sample-to-sample reproducibility (CV ∼ only 5.6%) for SERS analysis of the probe molecule, methylene blue. These findings highlight the potential of 3D anisotropic nanoparticle aggregates as functional plasmonic nanoarchitectures that could find applications in sensing, photonics, optoelectronics and lasing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp03684jDOI Listing

Publication Analysis

Top Keywords

gold nanoprisms
12
surface-enhanced raman
8
raman scattering
8
nanoprism aggregates
8
plasmonic
5
nanoprism
5
dna-mediated hierarchical
4
hierarchical organization
4
organization gold
4
aggregates
4

Similar Publications

Light-Triggered Plasmonic DNAzyme Walker Enables Precise Subcellular Molecular Imaging with Reduced Off-Mitochondria Signal Leakage.

Anal Chem

October 2024

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

The development of highly sensitive and precise imaging techniques capable of visualizing crucial molecules at the subcellular level is essential for elucidating mitochondrial functions and uncovering novel mechanisms in biological processes. However, traditional molecular imaging strategies are still limited by off-mitochondria signal leakage because of the "always-active" sensing mode. To address this limitation, we have developed a light-triggered activation sequence activated plasmonic DNAzyme walker (PDW) for accurate subcellular molecular imaging by the combination of an organelle localized strategy, upconversion nanotechnology, and a plasmon enhanced fluorescence (PEF) technique.

View Article and Find Full Text PDF

Shape symmetry breaking in the formation of inorganic nanostructures is of significant current interest. It was typically achieved through the growth of colloidal nanoparticles with adsorbed chiral molecules. Photochemical processes induced through asymmetric plasmon excitation by circularly polarized light in surface immobilized nanostructures also led to symmetry breaking.

View Article and Find Full Text PDF

Corrigendum to "Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy" [Acta Biomaterialia 2020, 117, 361-373].

Acta Biomater

September 2024

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China. Electronic address:

View Article and Find Full Text PDF

Harnessing the power of thermosensitive liposomes with gold nanoprisms and silica for controlled drug delivery in combined chemotherapy and phototherapy.

RSC Adv

July 2024

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain

In recent years, the scientific community has tried to address the treatment of complex diseases such as cancer in a more appropriate and promising way. Regarding this and benefiting from the unique optical properties of gold nanoprisms (AuNPRs), the physicochemical properties of thermosensitive liposomes (TSLs), and the tunable drug encapsulation and release properties of silica nanoparticles (BioSi@NPs), this study has developed two nanoformulations. These nanoformulations have the potential to integrate chemotherapy and photothermal therapy within a single entity.

View Article and Find Full Text PDF

Predictive understanding of factors affecting plasmon-exciton coupling is crucial for the successful realization of the exciting potentials of plexcitonic nanostructures. Here, we systematically investigate the role of plasmonic metals in controlling the plasmon-exciton coupling strength. We use gold and silver nanoprisms, having identical LSPR maxima, as the plasmonic components and form two plexciton hybrids with the J-aggregates of a cyanine dye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!