Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium. The metal ions with a higher charge to radius ratio promote clusterization which results in the enhancement of the intrinsic fluorescence, an effect known as "clusteroluminescence" of the amino acids aggregates. The imaging study reveals that metal ions with a higher charge to size ratio inhibit the large fibrillation of aromatic amino acids by promoting the formation of small nonfibrillar aggregates through increased hydrophobicity in the medium. The nanoaggregates are assumed to be responsible for the enhancement in the blue "clusteroluminescence".

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c07392DOI Listing

Publication Analysis

Top Keywords

metal ions
24
intrinsic blue
12
aromatic amino
12
amino acids
12
blue fluorescence
8
amino acid
8
study reveals
8
ions higher
8
higher charge
8
metal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!