Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated coverslips, then visually detect and sequence individual mA-immunolabled transcripts without amplification. Integration of a nanoscale device enabled us to isolate single cells on the platform, and thereby relate single-cell mA modification states to gene expression signatures and cell surface markers. Application of the platform to MUTZ3 leukemia cells revealed a marked reduction in cellular mA levels as CD34 leukemic progenitors differentiate to CD14 myeloid cells. We then coupled single-molecule mA detection with fluorescence hybridization (FISH) to relate mRNA and mA levels of individual genes to single-cell phenotypes. This single-cell multi-modal assay suite can empower investigations of RNA modifications in rare populations and single cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562683 | PMC |
http://dx.doi.org/10.1016/j.crmeth.2021.100061 | DOI Listing |
Microbiol Mol Biol Rev
January 2025
General Microbiology, Technische Universität Dresden, Dresden, Germany.
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.
View Article and Find Full Text PDFCells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment.
View Article and Find Full Text PDFGeroscience
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States.
Heterogeneity during (Mtb) infection greatly impacts disease outcome and complicates treatment. This heterogeneity encompasses many facets, spanning local differences in the host immune response to Mtb and the environment experienced by the bacterium, to nonuniformity in Mtb replication state. All of these facets are interlinked and each can affect Mtb susceptibility to antibiotic treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!