A keratinase from (KerPA), which belongs to the M4 family of metallopeptidases, was characterised in this study This enzyme was engineered with non-canonical amino acids (ncAAs) using genetic code expansion. Several variants with enhanced activity and thermostability were identified and the most prominent, Y21pBpF/Y70pBpF/Y114pBpF, showed an increase in enzyme activity and half-life of approximately 1.3-fold and 8.2-fold, respectively. Considering that keratinases usually require reducing agents to efficiently degrade keratin, the Y21pBpF/Y70pBpF/Y114pBpF variant with enhanced activity and stability under reducing conditions may have great significance for practical applications. Molecular Dynamics (MD) was performed to identify the potential mechanisms underlying these improvements. The results showed that mutation with pBpF at specific sites of the enzyme could fill voids, form new interactions, and reshape the local structure of the active site of the enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558439 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.770907 | DOI Listing |
Small
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
Metacaspases (MCA), are cysteine-dependent proteases closely related to caspases. In protozoa, MCA plays an important role in programmed cell death (PCD). In Trichomonas vaginalis, a kind of PCD that resembles apoptosis has been described, but the activators of this mechanism have not been demonstrated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation.
View Article and Find Full Text PDFNat Chem
January 2025
Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!