Background: The chaperonin containing t-complex (CCT) proteins play an important role in cell cycle-related protein degradation in yeast and mammals. The role of the chaperonin containing t-complex 4 (CCT4), one subtype of CCT proteins, in the progress of hepatocellular carcinoma (HCC) was not fully elucidated. Here, we aimed to explore the mechanisms of CCT4 in HCC.
Methods: In this study, we used the UALCAN platform to analyze the relationship between CCT4 and HCC, and the association of CCT4 with the overall survival (OS) of HCC patients was also analyzed. CCT4 expression in HCC tumor tissues and normal tissues was also determined by western blot (WB) assay. Lentivirus vector was used to knock down the CCT4 expression, and quantitative polymerase chain reaction and WB were used to determine the level of CCT4 in HCC cell lines. Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to detect the cell proliferation, and flow cytometry (FCM) was performed to evaluate the effect of CCT4 on the apoptosis of HCC cells. Co-immunoprecipitation (co-IP) assay and WB were used to explore the mechanisms of CCT4 regulating the growth of HCC. Data were calculated from at least three replicate experiments and expressed as mean ± standard deviation. Student's t test, paired t test, and Kaplan-Meier analysis were used to compare across different groups.
Results: We found CCT4 was upregulated in HCC tissues compared with normal tissues, and its high expression was associated with poor prognosis (P < 0.001). CCT4 was significantly increased in HCC tumor tissues compared with normal tissues (0.98 ± 0.12 vs. 0.23 ± 0.05, t = 7.73, P < 0.001). After being transfected with CCT4 short-hairpin RNA (shRNA), CCT4 was decreased in mRNA level and protein level in both Huh7 (mRNA level: 0.41 ± 0.07 vs. 1.01 ± 0.11, t = 8.09, P = 0.001; protein level: 0.61 ± 0.03 vs. 0.93 ± 0.07, t = 7.19, P = 0.002) and Hep3b cells (mRNA level: 0.55 ± 0.11 vs. 1.04 ± 0.15, t = 4.51, P = 0.011; protein level: 0.64 ± 0.10 vs. 0.95 ± 0.08, t = 4.32, P = 0.012). CCK8 assay indicated that CCT4 knockdown inhibited cell proliferation in both Huh7 (OD value of 3 days: 0.60 ± 0.14 vs. 0.97 ± 0.16, t = 3.13, P = 0.036; OD value of 4 days: 1.03 ± 0.07 vs. 1.50 ± 0.12, t = 5.97, P = 0.004) and Hep3b (OD value of 3 days: 0.69 ± 0.14 vs. 1.10 ± 0.11, t = 3.91, P = 0.017; OD value of 4 days: 1.12 ± 0.12 vs. 1.48 ± 0.13, t = 3.55, P = 0.024) cells. EdU assay showed that CCT4 knockdown inhibited the cell proliferation in both Huh7 (EdU positive rate: [31.25 ± 3.41]% vs. [58.72 ± 3.78]%, t = 9.34, P = 0.001) and Hep3b cells (EdU positive rate: [44.13 ± 7.02]% vs. [61.79 ± 3.96]%, t = 3.79, P = 0.019). FCM assay suggested that CCT4 knockdown induced apoptosis in HCC cells (apoptosis rate of Huh7: [9.10 ± 0.80]% vs. [3.66 ± 0.64]%, t = -9.18, P = 0.001; apoptosis rate of Hep3b: [6.69 ± 0.72]% vs. [4.20 ± 0.86]%, t = -3.84, P = 0.018). We also found that CCT4 could regulate anaphase-promoting complex (APC)Cdc20 activity via interacting with Cdc20. Furthermore, CCT4 knockdown induced securin (0.65 ± 0.06 vs. 0.44 ± 0.05, t = -4.69, P = 0.009) and B-cell lymphoma-2 (Bcl-2) interacting mediator of cell death (Bim; 0.96 ± 0.06 vs. 0.61 ± 0.09, t = -5.65, P = 0.005) accumulation. The upregulation of securin inhibited cell growth by downregulating cyclin D1 (0.65 ± 0.05 vs. 1.04 ± 0.07, t = 8.12, P = 0.001), and the accumulation of Bim inhibited Bcl-2 (0.77 ± 0.04 vs. 0.87 ± 0.04, t = 3.00, P = 0.040) and activated caspase 9 (caspase 9: 0.77 ± 0.04 vs. 0.84 ± 0.05, t = 1.81, P = 0.145; cleaved caspase 9: 0.64 ± 0.06 vs. 0.16 ± 0.07, t = 1.81, P = 0.001), which led to elevated apoptosis.
Conclusions: Overall, these results showed that CCT4 played an important role in HCC pathogenesis through, at least partly, interacting with Cdc20.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631418 | PMC |
http://dx.doi.org/10.1097/CM9.0000000000001851 | DOI Listing |
BMC Cancer
November 2024
Department of Intensive Medicine (Comprehensive Intensive Care Unit), The First Affiliated Hospital of Gannan Medical University, No. 128 Jin Ling Lu, Ganzhou, Jiangxi, 341000, P.R. China.
Background: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, characterized by high mortality. This study aimed to explore the prognostic value and function of alternative lengthening of telomeres (ALT)-related genes in HCC.
Methods: Differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) and then intersected with ALT-related genes to obtain ALTDEGs.
Clin Exp Med
May 2024
State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
Breast cancer (BC) represents a multifaceted malignancy, with escalating incidence and mortality rates annually. Chemotherapy stands as an indispensable approach for treating breast cancer, yet drug resistance poses a formidable challenge. Through transcriptome data analysis, we have identified two sets of genes exhibiting differential expression in this context.
View Article and Find Full Text PDFEur J Pharmacol
April 2024
Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
We have developed a diphtheria toxin-based recombinant human CCR4-IL2 bispecific immunotoxin (CCR4-IL2-IT) for targeted therapy of cutaneous T-cell lymphoma (CTCL). CCR4-IL2-IT demonstrated superior efficacy in an immunodeficient mouse CTCL model. Recently, we have compared the in vivo efficacy of CCR4-IL2-IT versus Brentuximab (FDA approved leading drug in CTCL market) in the same immunodeficient mouse CTCL model.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2024
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, 221009, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, 150036, China; College of Life Sciences, Jiangsu Normal University, Jiangsu, 221116, China. Electronic address:
Objective: Despite continuous progress in treatment, recurrence and metastasis limit further improvement in the prognosis of breast cancer (BC) patients. Our aim was to search for a crucial prognostic biomarker of BC.
Materials And Methods: Patient data were selected from The Cancer Genome Atlas (TCGA) and GTEx databases.
Diagnostics (Basel)
September 2023
Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
The main goal of this study was to characterize cancer/testis antigens (CTAs) as potential molecular markers of ovarian cancer. First, we gathered and analyzed a significantly large dataset of 21 selected CTAs that are encoded by 32 genes; the dataset consisted of the mutation data, expression data, and survival data of patients with ovarian cancer (n = 15,665). The 19 functionally significant missense mutations were identified in 9 CTA genes: ACRBP, CCT4, KDM5B, MAGEA1, MAGEA4, PIWIL1, PIWIL2, PRAME, and SPA17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!