A long-standing question in systems neuroscience is to what extent task-relevant features of neocortical processing are localized or distributed. Coordinated activity across the neocortex has been recently shown to drive complex behavior in the mouse, while activity in selected areas is canonically associated with specific functions (e.g., movements in the case of the motor cortex). Reach-to-grasp (RtG) movements are known to be dependent on motor circuits of the neocortex; however, the global activity of the neocortex during these movements has been largely unexplored in the mouse. Here, we characterized, using wide-field calcium imaging, these neocortex-wide dynamics in mice of either sex engaging in an RtG task. We demonstrate that, beyond motor regions, several areas, such as the visual and the retrosplenial cortices, also increase their activity levels during successful RtGs, and homologous regions across the ipsilateral hemisphere are also involved. Functional connectivity among neocortical areas increases transiently around movement onset and decreases during movement. Despite this global phenomenon, neural activity levels correlate with kinematics measures of successful RtGs in sensorimotor areas only. Our findings establish that distributed and localized neocortical dynamics co-orchestrate efficient control of complex movements. Mammals rely on reaching and grasping movements for fine-scale interactions with the physical world. In the mouse, the motor cortex is critical for the execution of such behavior, yet little is known about the activity patterns across neocortical areas. Using the mesoscale-level networks as a model of cortical processing, we investigated the hypothesis that areas beyond the motor regions could participate in RtG planning and execution, and indeed a large network of areas is involved while performing RtGs. Movement kinematics correlates mostly with neural activity in sensorimotor areas. By demonstrating that distributed and localized neocortical dynamics for the execution of fine movements coexist in the mouse neocortex during RtG, we offer an unprecedented view on the neocortical correlates of mammalian motor control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808729PMC
http://dx.doi.org/10.1523/JNEUROSCI.0762-20.2021DOI Listing

Publication Analysis

Top Keywords

distributed localized
12
mouse neocortex
8
activity neocortex
8
areas
8
motor cortex
8
motor regions
8
activity levels
8
successful rtgs
8
neocortical areas
8
neural activity
8

Similar Publications

We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate.

View Article and Find Full Text PDF

Background: Recent proteomic studies have documented that Long COVID in adults is characterized by a pro-inflammatory signature with thromboinflammation. However, if similar events happen also in children with Long COVID has never been investigated.

Methods: We performed an extensive protein analysis of blood plasma from pediatric patients younger than 19 years of age Long COVID and a control group of children with acute COVID-19, MIS-C, and healthy controls resulted similar for sex distribution and age.

View Article and Find Full Text PDF

AHNAK2: a potential diagnostic biomarker for pancreatic cancer related to cellular motility.

Sci Rep

January 2025

Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.

Pancreatic ductal adenocarcinoma lacks suitable biomarkers for early diagnosis of disease. In gene panels developed for early diagnosis of pancreatic cancer, high AHNAK2 mRNA expression was one possible biomarker. In silico analysis of published human sample datasets (n = 177) and ex vivo analysis of human plasma samples (n = 30 PDAC with matched 30 healthy control) suggested AHNAK2 could be a diagnostic biomarker.

View Article and Find Full Text PDF

Nowadays rice has become one of the world's staple foods. Rice in southern China is also a staple food for everyone, however, with the development of China's industrialization model, many industrial areas may be contaminated by heavy metals, leading to contamination of the agricultural areas. With the development of recent years, Nanning has become a heavily industrial development area, and rice is also a favourite staple food.

View Article and Find Full Text PDF

An application of matching algorithms to generalize small-area estimates of chronic pain prevalence to neighbourhoods across England.

J Public Health (Oxf)

January 2025

Centre for Applied Health & Social Care Research (CARe), Robert Winston Building, Broomhall Road, Sheffield Hallam University, Sheffield S10 2BP, UK.

Background: Local decision-makers lack granular data on the prevalence of chronic pain in their populations. We applied matching methods to generalize estimates from one local survey in England to other neighborhoods across the country with a similar sociodemographic composition.

Methods: We used propensity score matching to match lower-layer super output areas (LSOA) across England with 230 surveyed LSOAs in North Staffordshire by age, sex, ethnicity, deprivation, and rurality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!