Linking soil organic carbon stock to microbial stoichiometry, carbon sequestration and microenvironment under long-term forest conversion.

J Environ Manage

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 43007, China. Electronic address:

Published: January 2022

Forest conversion can drastically impact carbon (C) and nutrient processes and microbial stoichiometry, which will modify soil organic C (SOC) stock. However, SOC stock dynamics and its underlying mechanisms induced by long-term forest conversion remain unclear. Three well-protected plantations converted from natural forests for 36 years were compared, i.e., Cryptomeria fortunei (CF), Metasequoia glyptostroboides (MG) and Cunninghamia lanceolata (CL), with a natural forest (NF) as a control. SOC stock size and stability across three soil depths (0-10, 10-30 and 30-60 cm) were examined with aggregate-based method. Forest floors and fine roots were treated as C and nutrient inputs while soil respiration (Rs) was treated as C output. Soil microbial biomass C, nitrogen and phosphorus were measured to calculate microbial stoichiometry, as well as microenvironment and soil physicochemical properties. The relationships between SOC stock (size and stability) and these factors were explored using structural equation model. The results showed that microbial stoichiometry had strong or strict homeostasis at each soil depth. At 0-10 cm soil deep, SOC stock size varied with tree species (following the rank of CL > NF ≈ CF > MG) but its stability increased in all forest conversion types, regulated by forest floor quantity and quality associated with Rs; at 10-30 cm soil deep, the SOC stock sizes decreased in CF and MG, but SOC stock stability increased in MG, jointly driven by fine root quality and microenvironment; at 30-60 cm soil deep, SOC stock size decreased but its stability increased in MG, whereas both its size and stability had few changes in CF or CL, modified by soil physicochemical property associated with microbial stoichiometry and Rs. Overall, the effects of microbial stoichiometry and microenvironment on SOC stock were not pronounced. Thus, SOC stock size changed with soil depth and tree species but its stability tended to be steady at all depths varying with tree species. These results suggest that SOC stock size and stability are mainly determined by self-regulation process of forest ecosystems over more than three-decade after forest conversion, which will help us more accurately assess C sequestration strategies regarding long-term forest conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113940DOI Listing

Publication Analysis

Top Keywords

soc stock
44
microbial stoichiometry
24
forest conversion
24
stock size
24
size stability
16
stock
12
long-term forest
12
soil deep
12
deep soc
12
tree species
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!