Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides.

J Environ Manage

Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia; School of Biology and Environmental Science, Faculty of Science, QUT, Brisbane, Queensland, 4000, Australia; ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, Queensland, 4000, Australia. Electronic address:

Published: January 2022

Conversion of keratin waste to value-added products not only reduces waste volumes but also creates new revenue streams for the animal production industry. In the present study, combination of alkaline pretreatment of cattle hair with enzymatic hydrolysis was studied to produce keratin hydrolysates with relatively high antioxidant activities. Firstly, the effect of pretreatment conditions at a high solid/liquid mass ratio of 1:2 with different NaOH loadings and temperatures was studied. Increasing NaOH concentration from 1.0% to 2.5% and temperature from room temperature to 110 °C increased hair hydrolysis by keratinase and protein recovery in hydrolysates. Mild pretreatment with 1.5% NaOH at 70 °C for 30 min led to a protein recovery of 30% in the enzymatic hydrolysate. The resulting hydrolysate showed a high antioxidant activity, scavenging 69% of the ABTS radical with a low EC of 0.8 mg/mL. Severe pretreatment with 2.5% NaOH at 110 °C for 30 min resulted in a higher protein recovery of 45%, but a lower ABTS radical scavenging activity of 56% and a higher EC of 1.3 mg/mL. The reduced antioxidant activity was attributed to the reduced proportion of small peptides (<3 kDa) and the increased extent of amino acid chemical modification. This study demonstrated that controlling alkali pretreatment conditions could lead to the production of enzymatic hydrolysates with higher antioxidant activities for potential value-adding applications. The information generated from this study will aid scale-up and commercialisation of processes with optimised antioxidant peptide production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113945DOI Listing

Publication Analysis

Top Keywords

protein recovery
12
keratin waste
8
high antioxidant
8
antioxidant activity
8
abts radical
8
pretreatment
5
valorisation keratin
4
waste controlled
4
controlled pretreatment
4
pretreatment enhances
4

Similar Publications

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Growth-differentiation factor 15 (GDF-15) is a cytokine involved in cellular stress responses and inflammation. This meta-analysis evaluates the association between circulating GDF-15 levels and functional outcomes in patients with acute ischemic stroke (AIS). A comprehensive search of Medline, Web of Science, Embase, Wanfang, and CNKI was conducted up to July 15, 2024.

View Article and Find Full Text PDF

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

Objective: To compare biomarkers of neurovascular unit (NVU) - S100β, NSE, BDNF and indicators of the brain electrical activity in patients who underwent coronary artery bypass grafting (CABG) depending on the use of different versions of multi-tasking cognitive training (CT).

Material And Methods: The study included 89 people, of whom 47 completed the CTI (postural and three cognitive tasks (counting backwards, verbal fluency and the open-ended task «Unusual use of an ordinary object») and 42 patients, who underwent CTII (visuomotor reaction and the same cognitive tasks) in the early postoperative CABG period. The patients of both groups underwent complex testing of psychomotor, executive functions, attention, short-term memory and EEG study in the perioperative period of CABG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!