Metal oxide semiconductors are of great interest for enabling advanced photodetectors. However, operational instability and the absence of an appropriate doping technique hinder practical development and commercialization. Here, a strategy is proposed to dramatically increase the conventional photodetection performance, having superior stability in operational and environmental atmospheres. By performing energy-band engineering through an octadecylphosphonic acid (ODPA) self-assembled-monolayer-based doping treatment, the proposed indium-gallium-zinc oxide (IGZO)/p-Si heterointerface devices exhibit greatly enhance the photoresponsive characteristics, including a photoswitching current ratio with a 100-fold increase, and photoresponsivity and detectivity with a 15-fold increase each. The observed ODPA doping effects are investigated through comprehensive analysis with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM). Furthermore, the proposed photodetectors, fabricated at a 4 in. wafer scale, demonstrate its excellent operation robustness with consistent performance over 237 days and 20 000 testing cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202107364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!