Background: The "cognitive dysmetria hypothesis" of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum.
Objectives: This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls.
Methods: Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the "rotation adaptation task" the perturbation consisted of a rotation (30° clockwise), in the "gain adaptation task" the extent of the movement feedback was reduced (by a factor of 0.7) and in the "vertical reversal task," up- and downward pen movements were reversed by 180°.
Results: Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects.
Conclusions: Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000518867 | DOI Listing |
Eur J Pediatr
January 2025
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy.
Unlabelled: Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males (47,XXY karyotype in 80-90% of cases), primarily characterized by hypergonadotropic hypogonadism and infertility. It encompasses a broad phenotypic spectrum, leading to variability in neurocognitive and psychosocial outcomes among affected individuals. Despite the recognized correlation between KS and various neuropsychiatric conditions, studies investigating potential sleep disorders, particularly in pediatric subjects, are lacking.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland.
The hormonal aspect of undescended testes (UDTs) in prepubertal boys, i.e., after mini-puberty, is poorly understood.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).
View Article and Find Full Text PDFSports Med
January 2025
Medical Services, Real Madrid, Madrid, Spain.
Background: Aging is associated with sustained low-grade inflammation, which has been linked to age-related diseases and mortality. Long-term exercise programs have been shown to be effective to for attenuating this process; however, subsequent detraining might negate some of these benefits. Master athletes, as a model of lifelong consistent exercise practice, have been suggested to present similar inflammatory profiles to untrained young adults.
View Article and Find Full Text PDFElife
January 2025
Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands.
Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of 'fractal cycles' of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!