Human neuroimaging studies have shown that, during cognitive processing, the brain undergoes dynamic transitions between multiple, frequency-tuned states of activity. Although different states may emerge from distinct sources of neural activity, it remains unclear whether single-area neuronal spiking can also drive multiple dynamic states. In mice, we ask whether frequency modulation of the entorhinal cortex activity causes dynamic states to emerge and whether these states respond to distinct stimulation frequencies. Using hidden Markov modeling, we perform unsupervised detection of transient states in mouse brain-wide fMRI fluctuations induced via optogenetic frequency modulation of excitatory neurons. We unveil the existence of multiple, frequency-dependent dynamic states, invisible through standard static fMRI analyses. These states are linked to different anatomical circuits and disrupted in a frequency-dependent fashion in a transgenic model of cognitive disease directly related to entorhinal cortex dysfunction. These findings provide cross-scale insight into basic neuronal mechanisms that may underpin flexibility in brain-wide dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609366 | PMC |
http://dx.doi.org/10.1016/j.celrep.2021.109954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!