Informational macromolecules in biology are composed of subunits of a single handedness, d-nucleotides in nucleic acids and l-amino acids in proteins. Although this chiral uniformity may be expedient, it is not a chemical necessity, as demonstrated by the recent example of an RNA enzyme that catalyzes the RNA-templated polymerization of RNA molecules of the opposite handedness. This reaction, when carried out iteratively, can provide the basis for exponential amplification of RNA molecules and the information they contain. By carrying out thermal cycling, analogous to the polymerase chain reaction, and supplying oligonucleotide building blocks that comprise both the functional strand of RNA and its complement, cross-chiral exponential amplification was achieved. This process was used to amplify the l-RNA form of the hammerhead ribozyme, catalyzed by the d-RNA form of the polymerase. The resulting l-hammerhead exhibits the expected activity in cleaving a corresponding l-RNA substrate. Exponential amplification was also carried out within individual droplets of a water-in-oil emulsion. The ability to amplify enantio-RNAs, both in bulk solution and within compartments, provides a means to evolve cross-chiral RNA polymerases based on the function of the RNAs they produce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c09233 | DOI Listing |
Biosens Bioelectron
December 2024
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Vet Sci
November 2024
Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the gene of BRSV was developed in this study.
Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C.
Talanta
December 2024
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. Electronic address:
High sensitivity and specificity in microRNA detection are of great significance for early cancer screening. This study employed a pre-assembled bulb-shaped G-quadruplex signal unit (G4MB) as a novel and efficient label-free probe. The products amplified by the miRNA-155-targeted exponential amplification reaction (EXPAR) activated the trans-cleavage activity of CRISPR/Cas12a, disrupting the G4MB structure to achieve dual-channel fluorescence/colorimetric (FL/CM) inverse signal output.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
The CRISPR/Cas technology shows great potential in molecular detection and diagnostics. However, it is still challenging to detect multiple targets simultaneously using the CRISPR-Cas system. Herein, we ingeniously leverage the synergistic effect of two short single-stranded DNA activators to construct a CRISPR/Cas12a-driven electrochemical sensing platform based on an AND logic circuit ("AND" LC-CRISPR) for the simultaneous detection of dual miRNAs.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!