AI Article Synopsis

  • The study uses ATR FTIR to examine how the food protein β-lactoglobulin (BLG) and bile salts (TCA and GCA) interact with titanium dioxide nanoparticles, which could inform our understanding of digestion and bioavailability.
  • TCA shows weak retention on TiO nanoparticles, while GCA binds more strongly through two mechanisms, with one form being particularly resistant to removal.
  • BLG displays irreversible binding and structural changes depending on pH, suggesting that conditions in the stomach and small intestine affect its behavior, and coadsorption studies highlight how TCA and GCA’s binding can change in the presence of BLG.

Article Abstract

The technique of in situ particle film attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) has been used to probe the adsorption and coadsorption (sequential) of a common food protein (β-lactoglobulin, BLG) and two representative bile salts (taurocholic acid and glycocholic acid, abbreviated as TCA and GCA) onto the surface of titanium dioxide (TiO) nanoparticles. Evaluating of binding interactions between commonly used (historically now, in some countries) food additives and food components, as well as the body's own digestion chemicals, is a critical step in understanding the role of colloidal phenomena in digestion and bioavailability. TCA is found to adsorb onto TiO but without any significant ability to be retained when it is not present in the aqueous phase. GCA is also found to adsorb via two distinct binding mechanisms, with one type of adsorbed species being resistant to removal. BLG adsorbs, is irreversibly bound, and has altered conformation when adsorbed at pH 2 (stomach conditions) to the conformation when adsorbed at pH 6.5 (small intestine conditions). This altered conformation is not interface-dependent and is mirrored in the solution spectra of BLG. Sequential coadsorption studies indicate that TCA and GCA adsorb onto TiO nanoparticle surfaces and display similar degrees of reversibility and binding in the presence or absence of preadsorbed BLG.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c01830DOI Listing

Publication Analysis

Top Keywords

atr ftir
8
tio nanoparticle
8
bile salts
8
tca gca
8
adsorb tio
8
gca adsorb
8
altered conformation
8
conformation adsorbed
8
ftir study
4
study interaction
4

Similar Publications

Textiles provide a valuable source of information regarding past cultures and their artistic practices. Understanding ancient textiles requires identifying the raw materials used, since the origin of dyes and fibers may be from plants or animals, with the specific species used varying based on geography, trade routes and cultural significance. A selection of nine Chancay textile fragments attributed to 800-1200 CE were studied with liquid chromatography mass spectrometry (LC-MS) and direct analysis in real time mass spectrometry (DART-MS) to identify the chemical compounds in extracts of natural dyes used to create green, blue, red, yellow and black colors.

View Article and Find Full Text PDF

Nano FTIR spectroscopy of liquid water in the -OH stretching region.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 29, SE-100 44 Stockholm, Sweden. Electronic address:

Nano-FTIR spectroscopy is a technique where atomic force microscopy (AFM) and infrared (IR) spectroscopy are combined to obtain chemical information with a lateral resolution of some tens of nm. It has been used to study numerous solid surfaces and recently also liquids including water have been examined by separating the liquid from the AFM tip by a thin lid. However, although the water stretching vibrations are significantly more intense than the bending vibration in conventional IR spectroscopy, only the bending vibration has been observed in nano-FTIR spectroscopy so far.

View Article and Find Full Text PDF

Binding of glyphosate (PMG) to metal (hydr)oxides controls its availability and mobility in natural waters and soils, and these minerals are often suggested for the removal of PMG from wastewaters. However, a solid mechanistic and quantitative description of the adsorption behavior and surface speciation on these surfaces is still lacking, while it is essential for understanding PMG behavior in aquatic and terrestrial systems. This study gives new insights through advanced surface complexation modeling of new and previously published adsorption data, supplemented with MO/DFT calculations of the geometry, thermochemistry and theoretical infrared (IR) spectra of the surface complexes.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Chlorhexidine-loaded microneedles for treatment of oral diseases.

Int J Pharm

December 2024

Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:

Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!