LiNiO (LNO) is a promising cathode material for next-generation Li-ion batteries due to its exceptionally high capacity and cobalt-free composition that enables more sustainable and ethical large-scale manufacturing. However, its poor cycle life at high operating voltages over 4.1 V impedes its practical use, thus motivating efforts to elucidate and mitigate LiNiO degradation mechanisms at high states of charge. Here, a multiscale exploration of high-voltage degradation cascades associated with oxygen stacking chemistry in cobalt-free LiNiO , is presented. Lattice oxygen loss is found to play a critical role in the local O3-O1 stacking transition at high states of charge, which subsequently leads to Ni-ion migration and irreversible stacking faults during cycling. This undesirable atomic-scale structural evolution accelerates microscale electrochemical creep, cracking, and even bending of layers, ultimately resulting in macroscopic mechanical degradation of LNO particles. By employing a graphene-based hermetic surface coating, oxygen loss is attenuated in LNO at high states of charge, which suppresses the initiation of the degradation cascade and thus substantially improves the high-voltage capacity retention of LNO. Overall, this study provides mechanistic insight into the high-voltage degradation of LNO, which will inform ongoing efforts to employ cobalt-free cathodes in Li-ion battery technology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202106402DOI Listing

Publication Analysis

Top Keywords

high-voltage degradation
12
high states
12
states charge
12
degradation cascades
8
cobalt-free linio
8
oxygen loss
8
degradation lno
8
degradation
6
lno
5
high
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!