Has Artificial Intelligence Impacted Drug Discovery?

Methods Mol Biol

Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.

Published: November 2021

Artificial intelligence (AI) tools find increasing application in drug discovery supporting every stage of the Design-Make-Test-Analyse (DMTA) cycle. The main focus of this chapter is the application in molecular generation with the aid of deep neural networks (DNN). We present a historical overview of the main advances in the field. We analyze the concepts of distribution and goal-directed learning and then highlight some of the recent applications of generative models in drug design with a focus into research work from the biopharmaceutical industry. We present in some more detail REINVENT which is an open-source software developed within our group in AstraZeneca and the main platform for AI molecular design support for a number of medicinal chemistry projects in the company and we also demonstrate some of our work in library design. Finally, we present some of the main challenges in the application of AI in Drug Discovery and different approaches to respond to these challenges which define areas for current and future work.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1787-8_6DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
application drug
8
drug discovery
8
intelligence impacted
4
drug
4
impacted drug
4
drug discovery?
4
discovery? artificial
4
intelligence tools
4
tools find
4

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

View Article and Find Full Text PDF

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

Adv Sci (Weinh)

December 2024

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Precision medicine in less-defined subtype diffuse large B-cell lymphoma (DLBCL) remains a challenge due to the heterogeneous nature of the disease. Programmed cell death (PCD) pathways are crucial in the advancement of lymphoma and serve as significant prognostic markers for individuals afflicted with lymphoid cancers. To identify robust prognostic biomarkers that can guide personalized management for less-defined subtype DLBCL patients, we integrated multi-omics data derived from 339 standard R-CHOP-treated patients diagnosed with less-defined subtype DLBCL from three independent cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!