History of Ataxias and Paraplegias with an Annotation on the First Description of Striatonigral Degeneration.

Cerebellum

Service of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", University of Cantabria, and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain.

Published: August 2022

AI Article Synopsis

  • The paper reviews the historical development of understanding degenerative cerebellar disorders and hereditary spastic paraplegias over the last 150 years.
  • It highlights key pathological subtypes like Friedreich's ataxia and striatonigral degeneration, along with Hans Joachim Scherer’s contributions.
  • The research emphasizes significant progress in the classification of ataxias with around 200 recognized genetic subtypes due to recent molecular findings.

Article Abstract

The aim of this paper is to carry out a historical overview of the evolution of the knowledge on degenerative cerebellar disorders and hereditary spastic paraplegias, over the last century and a half. Original descriptions of the main pathological subtypes, including Friedreich's ataxia, hereditary spastic paraplegia, olivopontocerebellar atrophy and cortical cerebellar atrophy, are revised. Special attention is given to the first accurate description of striatonigral degeneration by Hans Joachim Scherer, his personal and scientific trajectory being clarified. Pathological classifications of ataxia are critically analysed. The current clinical-genetic classification of ataxia is updated by taking into account recent molecular discoveries. We conclude that there has been an enormous progress in the knowledge of the nosology of hereditary ataxias and paraplegias, currently encompassing around 200 genetic subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12311-021-01328-6DOI Listing

Publication Analysis

Top Keywords

ataxias paraplegias
8
description striatonigral
8
striatonigral degeneration
8
hereditary spastic
8
history ataxias
4
paraplegias annotation
4
annotation description
4
degeneration aim
4
aim paper
4
paper carry
4

Similar Publications

Introduction: COQ4 mutation often leads to a fatal multi-system disease in infants. Recently, it was reported that the biallelic COQ4 variants may be a potential cause of hereditary spastic paraplegia (HSP). This study aims to describe the clinical features and genotype of the COQ4 associated hereditary spastic paraplegia (HSP).

View Article and Find Full Text PDF

Variants in KIF1A are associated with hereditary spastic paraplegia (SPG30), which can manifest in both pure and complex forms. We describe a Japanese family with a novel KIF1A variant presenting with a complex form of SPG30. Patient 1, a 69-year-old woman, experienced progressive gait disturbance due to spastic paraparesis and cerebellar atrophy, and intellectual disability.

View Article and Find Full Text PDF

The Chromodomain Helicase DNA-binding (CHD) protein family is ATP-dependent chromatin remodeling proteins that utilize energy produced by ATP hydrolysis to regulate chromatin structure and thereby modulate gene expression. The earliest report of a CHD3 gene mutation was by O'Roak, who found it during whole exome sequencing of 189 autism families in 2012. In 2018, Snijders Blok systematically assessed the autosomal dominant neurodevelopmental disorder caused by CHD3 gene damage, known as Snijders Blok-Campeau syndrome (SNIBCPS, OMIM 618205).

View Article and Find Full Text PDF

Diagnosing hereditary spastic paraplegia (HSP) in paediatric patients can be challenging, especially when there is no positive family history. Children are often initially misdiagnosed with cerebral palsy due to the gradual progression of the disease and non-specific neuroimaging findings, despite the absence of perinatal insult. This misdiagnosis can prevent timely prenatal diagnosis, limiting the ability to make informed decisions about the pregnancy and to plan early interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!