Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Kinetics of the uptake of inhaled anesthetics have been well studied, but the kinetics of elimination might be of more practical importance. The objective of the authors' study was to assess the effect of the overall ventilation/perfusion ratio (VA/Q), for normal lungs, on elimination kinetics of desflurane and sevoflurane.
Methods: The authors developed a mathematical model of inhaled anesthetic elimination that explicitly relates the terminal washout time constant to the global lung VA/Q ratio. Assumptions and results of the model were tested with experimental data from a recent study, where desflurane and sevoflurane elimination were observed for three different VA/Q conditions: normal, low, and high.
Results: The mathematical model predicts that the global VA/Q ratio, for normal lungs, modifies the time constant for tissue anesthetic washout throughout the entire elimination. For all three VA/Q conditions, the ratio of arterial to mixed venous anesthetic partial pressure Part/Pmv reached a constant value after 5 min of elimination, as predicted by the retention equation. The time constant corrected for incomplete lung clearance was a better predictor of late-stage kinetics than the intrinsic tissue time constant.
Conclusions: In addition to the well-known role of the lungs in the early phases of inhaled anesthetic washout, the lungs play a long-overlooked role in modulating the kinetics of tissue washout during the later stages of inhaled anesthetic elimination. The VA/Q ratio influences the kinetics of desflurane and sevoflurane elimination throughout the entire elimination, with more pronounced slowing of tissue washout at lower VA/Q ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0000000000004008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!